Accelerating Bianchi type- VIh Cosmological Model with variable  EoS  parameter


K.S. Adhav, D.R.K. Reddy, G.B. Tayade

Department of Mathematics, Sant Gadge Baba Amravati University, Amravati (444602) INDIA

*Corresponding Author E-mail:



We have studied anisotropic and homogeneous Bianchi type-VIh  cosmological models of the universe with variable equation of state (EoS) parameter (w) in General Relativity. A special form of deceleration parameter (q) which gives an early deceleration and late time accelerating cosmological model has been utilized to solve the Einstein’s field equations. The geometrical and physical aspects of the models are also studied.


KEYWORDS: Bianchi type-VIh space-time, Dark Energy, Special form of deceleration parameter.



The supernovae type-Ia observations, the large scale structures and the cosmic microwave background (CBM) radiations confirmed that the present universe is not only expanding but accelerating also. Cunha & Lima (2008), Cunha (2009) provided direct evidence caused for the present accelerating universe. Recently, Li et al. (2011) studied the present acceleration of the universe by analyzing the sample of baryonic acoustic oscillation (BAO) with cosmic microwave background (CMB) radiation and concluded that such sample of BAO with CMB increases the present cosmic acceleration which has been further explained by plotting graphs for change of deceleration parameter with redshift  z < 2.


The anisotropy plays a significant role in the early stage of evolution of the universe and hence the study of anisotropic and homogeneous cosmological models becomes important. In the present paper, we have further extended the special form of deceleration parameter [Singha and Debnath (2009)] for the anisotropic and homogeneous Bianchi type-VIh space-time in general relativity. The physical and geometrical aspects of the model are also discussed.




1.       Adhav K.S. et al.: IL NUOVO CIMENTO B,125(4),407(2010).

2.       Adhav. K.S. et al.: Astrophysics and Space Science, 332(2), 497(2011a).

3.       Adhav. K.S. et al.: Cent. Eur. J. Phys, 9(4), 919(2011b).

4.       Adhav K.S. et al: Mod. Phys. Lett. A, 26, 739 (2011c)

5.       Adhav. K.S.: Eur. Phys. J. Plus, 126, 122(2011d).

6.       Adhav. K.S.: International Journal of Mathematical Archive, 2(11), 2149(2011e).

7.       Adhav. K.S.: Bulg.J.Phys.,39(3),207(2012)

8.       Akarsu O.and  Kilinc C.B., Gen. Relat. Gravit. 42, 763(2010).

9.       Akarsu O.and Dereli T.: Int J Theor Phys; 51(2),612(2012).

10.     Amendola L.: Mon.Not.R. Astron. Soc.: 342, 221(2003).

11.     Berman M.S.: IL Nuovo Cimento B,74,182(1983)

12.     Carroll S.M et al.: Phys. Rev. D 68,023509 (2003).

13.     Cunha J.V. and Lima J.A.S.: Mon. Not. R. Astron. Soc.: 390(1),210(2008).

14.     Cunha J.V.: Phys. Rev. D 79, 047301(2009).

15.     Kumar S. and Singh C.P.: Gen. Relty and Gravt.,43(5), 1427(2012),

16.     Li.Z. et al.: Phys.Lett.B, 695, 1(2009).

17.     Perlmutter S.  et al.: Astrophys. J., 517, 565 (1999).

18.     Perlmutter S. et al.: Nature, 391, 51 (1998).

19.     Pradhan et al.: Int J Theor Phys, 50(9),2923(2011).

20.     Riess A.G.  et al., Astron. J. 116, 1009 (1998).

21.     Riess A.G.  et al., Astrophys. J. 560, 49 (2001).

22.     Roy S. R. and Prasad A., Indian J. Pure Appl. Math., 19, 86 (1988) .

23.     Singha A.K. and Debnath U.: Int. J. Theor Phys., 48(2),351(2009).

24.     YadavA.K. et al. : Int J Theor Phys, 50, 871–881(2011).





Received on 11.01.2014     Accepted on 02.02.2014

© All Right Reserved

Int. J. Tech. 4(1): Jan.-June. 2014; Page 27-31